0=-16t^2+150t+70

Simple and best practice solution for 0=-16t^2+150t+70 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+150t+70 equation:



0=-16t^2+150t+70
We move all terms to the left:
0-(-16t^2+150t+70)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+70)=0
We get rid of parentheses
16t^2-150t-70=0
a = 16; b = -150; c = -70;
Δ = b2-4ac
Δ = -1502-4·16·(-70)
Δ = 26980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26980}=\sqrt{4*6745}=\sqrt{4}*\sqrt{6745}=2\sqrt{6745}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{6745}}{2*16}=\frac{150-2\sqrt{6745}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{6745}}{2*16}=\frac{150+2\sqrt{6745}}{32} $

See similar equations:

| 3(s+22)=4(s+12 | | N^2=84-6n | | (10x6)(10x8)=10^10 | | 84=30+6w | | (7/5x)+(8/3x)=0 | | M^2+84=-8m | | 12=5x+5 | | -6-2b=6=12 | | x+1=1/2(4x) | | 3.5x-71=50 | | X=-16^2+64x+50 | | -6=n-6-2 | | 3.5x-50=50 | | z^2-18z+17=0 | | 3.8p=6 | | 3(2x-4)=8x-6(3x+4) | | m-(-7)=18 | | 4n^2-5n-20=0 | | 50x-71=50 | | 16u-7u=63 | | -150=6n | | 3x+14=81-7x | | 12+0.18x=30+0.14x | | 3.1=7.9-3u | | 3+x/5=3x | | v/29=28/29 | | 3s+4s=56 | | 2x-8=110 | | 3(5x+2)=2x | | x^-6x-20=7 | | 3x+25+2x=190 | | 5x+25=190 |

Equations solver categories